Some of the people working on rare plants and pollinators in Colorado:

- Vince Tepedino and colleagues at USU
- Sarah Clark, USU
- Becky Hufft Kao, Anna Sher, and colleagues at DBG
- CNAP
- USFWS
- Susan Panjabi and colleagues at CNHP
- Krissa Skogen, CBG
- Ron Abbott
Key Rare Plant Genera in Colorado

- **Astragalus** (45 spp)
- **Penstemon** (28 spp)
- **Carex** (24 spp)
- **Physaria** (19 spp)
- **Eriogonum** (18 spp)
- **Draba** (16 spp)
- **Oreocarya** (13 spp)
- **Botrychium** (12 spp)
- **Mentzelia** (8 spp)
- **Aletes** (8 spp)
- **Oenothera** (8 spp)
- **Phacelia** (8 spp)
- **Asclepias** (7 spp)
Today we’ll talk about...

- Astragalus (45 spp)
- Penstemon (28 spp)
- Carex (24 spp)
- Physaria (19 spp)
- Eriogonum (18 spp)
- Draba (16 spp)
- Cacti
- Orchids
- Conservation

But won’t have time to go into:

- Oreocarya (13 spp)
- Botrychium (12 spp)
- Mentzelia (8 spp)
- Aletes (8 spp)
- Oenothera (8 spp)
- Phacelia (8 spp)
- Asclepias (7 spp)
Astragalus (45 spp)

- Papilionaceous
- Bumblebees, digger bees, mason bees, honeybee.
- Dipterans (flies) and Coleoptera (beetles) are not likely to be important pollinators
- Some Geitonogamy, some obligate outcrossers
Astragalus schmolliae G1S1

- Anthophorid bees, Megachilid bees
- Flowers are “tripped” by the bees
• White, blue, and purple Penstemons: Bees, and the wasp *Pseudomasaristas vespoides*.

• Pink and Red Penstemons: Hummingbirds

Penstemon (28 spp)

The Insects That Visit Penstemon Flowers

Sarah Kimball
Department of Ecology and Evolutionary Biology,
University of Arizona, Tucson, AZ 85721

Paul Wilson
Department of Biology, California State University,
Northridge, CA 91330-8303

Plate 9: Common pollinators of plants in the genus *Penstemon* (photographs by Paul Wilson).

Bulletin of the American Penstemon Society Vol. 68
Penstemon grahamii G2S1

- Specialized flowers
- May be Self-compatible, autogamous and geitonogamous

Pseudomasaris wasp visiting P. grahamii
Photo by Dee Malone
• Specialized flowers
• *Osmia* appears to be extremely important for their pollination
• Self-compatible, autogamous and geitonogamous
• But far better seed production when outcrossing

Photos by Pam Smith
Carex (24 spp)

- Wind pollinated
- Carex is the ancestor of Cyperus, which can be insect pollinated

Physaria (19 spp)

- **Physaria congesta**
 - Requires pollination
 - Most pollinators are bees

Dudley Bluffs Bladderpod by Sarah Clark, USU

Physaria

- **Physaria obcordata**
 - Requires pollination
 - Most pollinators are native ground nesting bees (Andrenidae and Halictidae)

Physaria
Eriogonum (18 spp)

Aquilegia

Newsletter of the Colorado Native Plant Society

Eriogonum (18 spp)

• Some species propagate clonally
• Most Eriogonum species throughout Western North America are pollinated by a broad range of generalist pollinators
• *E. pelinophilum*, G1S1 has the highest number of pollinator species observed in the genus (Taliga and Glenne 2011).
• No clear examples of specialization

Eriogonum brandegeei G1G2S1S2

Photo: Michelle De Pringer-Levin

Photo: Susan Panjabi
Eriogonum brandegeei

- Floral Visitors to *E. brandegeei* (Panjabi 2004)

Draba (16 spp)

- Apomixis - asexual reproduction through seeds
- “Microspecies” concept by Grant (1981)
- Pollination is not required but may play a role in gene flow

Photo by Bernadette Kuhn
Draba
• *Sclerocactus wetlandicus* and *brevispinus*
 • Oucrossed and self incompatible.
 • Pollinated largely by native (ground nesting) halictid bees.

“Why do Orchids have so many perfect contrivances for their fertilisation? I am sure that many other plants offer analogous adaptations of high perfection; but it seems that they are really more numerous and perfect with the Orchideae than with most other plants.” –Charles Darwin (1888)
Most Cypripediums: Female Andrena haemorrhhoa bees

C. parviflorum: male lesser carpenter bees (Ceratina calcarta)

How important are pollinators?

- Astragalus (45 spp) **Critically important**
- Penstemon (28 spp) **Critically important**
- Carex (24 spp) **Not important**
- Physaria (19 spp) **Critically important**
- Eriogonum (18 spp) **Really important**
- Draba (16 spp) **Probably not important**
- Oreocarya (13 spp) **Usually important**
- Botrychium (12 spp) **Not relevant**
- Mentzelia (8 spp) **Critically important**
- Aletes (8 spp) **Probably important**
- Oenothera (8 spp) **Critically important**
- Phacelia (8 spp) **Many poorly known, important in most**
- Asclepias (7 spp) **Critically important**
Pollinators are a critical part of the equation for successful conservation of rare plants.
Pollinator Conservation

- **Research**
 - More funding needed

- **Incentives**
 - NRCS: Pollinator practices
 - Million Pollinator Garden Challenge
 - NWF

- **Education**
 - Xerxes Society, USFS

- **Regulation**
 - neonictinoid insecticides

- **Policy**
 - Helping Pollinators
 - Bee boxes near rare plant occurrences
Pollinator Conservation

- Education
 - American Mountaineering Center
Impacts on native bees and other pollinators remain poorly understood.

Table 5.1 Toxicity of Neonicotinoids

<table>
<thead>
<tr>
<th>Neonicotinoid</th>
<th>Known Toxicity to Honey Bees¹</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Contact LD₅₀</td>
</tr>
<tr>
<td>Acetamiprid</td>
<td>M</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Clothianidin</td>
<td>H</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Dinotefuran</td>
<td>H</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Imidacloprid</td>
<td>H</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Thiacloprid</td>
<td>M</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Thiamethoxam</td>
<td>H</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

H = highly toxic; M = moderately toxic
Toxicity: Highly toxic: LD₅₀ < 2 µg/bee; Moderately toxic: LD₅₀ 2–10.99 µg/bee; Slightly toxic: LD₅₀ 11–100 µg/bee; Practically non-toxic: LD₅₀ >100 µg/bee.

Colorado’s Landscape Disturbance Index
Acknowledgements

Susan Panjabi
Becky Hufft Kao
Bernadette Kuhn
Delia Malone
Jill Handwerk
Lee Grunau
Steve Olson
Thank You!

David G. Anderson
Office: (970) 491-6891
Cell: (970) 980-4680

david.anderson@colostate.edu

web: www.cnhp.colostate.edu
blog: http://cnhoblog.blogspot.com